CD109, a TGF-β co-receptor, attenuates extracellular matrix production in scleroderma skin fibroblasts
نویسندگان
چکیده
INTRODUCTION Scleroderma or systemic sclerosis (SSc) is a complex connective tissue disease characterized by fibrosis of skin and internal organs. Transforming growth factor beta (TGF-β) plays a key role in the pathogenesis of SSc fibrosis. We have previously identified CD109 as a novel TGF-β co-receptor that inhibits TGF-β signaling. The aim of the present study was to determine the role of CD109 in regulating extracellular matrix (ECM) production in human SSc skin fibroblasts. METHODS CD109 expression was determined in skin tissue and cultured skin fibroblasts of SSc patients and normal healthy subjects, using immunofluorescence, western blot and RT-PCR. The effect of CD109 on ECM synthesis was determined by blocking CD109 expression using CD109-specific siRNA or addition of recombinant CD109 protein, and analyzing the expression of ECM components by western blot. RESULTS The expression of CD109 proteinis markedly increased in SSc skin tissue in vivo and in SSc skin fibroblasts in vitro as compared to their normal counterparts. Importantly, both SSc and normal skin fibroblasts transfected with CD109-specific siRNA display increased fibronectin, collagen type I and CCN2 protein levels and enhanced Smad2/3 phosphorylation compared with control siRNA transfectants. Furthermore, addition of recombinant CD109 protein decreases TGF-β1-induced fibronectin, collagen type I and CCN2 levels in SSc and normal fibroblasts. CONCLUSION The upregulation of CD109 protein in SSc may represent an adaptation or consequence of aberrant TGF-β signaling in SSc. Our finding that CD109 is able to decrease excessive ECM production in SSc fibroblasts suggest that this molecule has potential therapeutic value for the treatment of SSc.
منابع مشابه
Reduction of fibroblast size/mechanical force down‐regulates TGF‐β type II receptor: implications for human skin aging
The structural integrity of human skin is largely dependent on the quality of the dermal extracellular matrix (ECM), which is produced, organized, and maintained by dermal fibroblasts. Normally, fibroblasts attach to the ECM and thereby achieve stretched, elongated morphology. A prominent characteristic of dermal fibroblasts in aged skin is reduced size, with decreased elongation and a more rou...
متن کاملImpaired Smad7-Smurf–mediated negative regulation of TGF-β signaling in scleroderma fibroblasts
253 Introduction Systemic sclerosis or scleroderma is an acquired disorder that typically results in fibrosis of the skin and internal organs (1). Although the pathogenesis of this disease is unclear, it includes inflammation, autoimmune attack, and vascular damage, leading to the activation of fibroblasts (2, 3). The reason for the presence of abnormal fibroblasts in scleroderma is not yet kno...
متن کاملActivin Receptor-Like Kinase 5 Inhibitor Attenuates Fibrosis in Fibroblasts Derived from Peyronie's Plaque
PURPOSE Transforming growth factor-β1 (TGF-β1) is the key fibrogenic cytokine associated with Peyronie's disease (PD). The aim of this study was to determine the antifibrotic effect of 3-((5-(6-Methylpyridin-2-yl)-4-(quinoxalin-6-yl)-1H-imidazol-2-yl) methyl)benzamide (IN-1130), a small-molecule inhibitor of the TGF-β type I receptor activin receptor-like kinase 5 (ALK5), in fibroblasts isolate...
متن کاملCD109 released from human bone marrow mesenchymal stem cells attenuates TGF-β-induced epithelial to mesenchymal transition and stemness of squamous cell carcinoma
Although there is increasing evidence that human bone marrow mesenchymal stem cells (hBM-MSCs) play an important role in cancer progression, the underlying mechanisms are poorly understood. Transforming growth factor β (TGF-β) is an important pro-metastatic cytokine. We have previously shown that CD109, a glycosylphosphatidylinositol-anchored protein, is a TGF-β co-receptor and a strong inhibit...
متن کاملFn14, a Downstream Target of the TGF-β Signaling Pathway, Regulates Fibroblast Activation
Fibrosis, the hallmark of human injuries and diseases such as serious burns, is characterized by excessive collagen synthesis and myofibroblast accumulation. Transforming growth factor-β (TGF-β), a potent inducer of collagen synthesis, has been implicated in fibrosis in animals. In addition to TGF-β, fibroblast growth factor-inducible molecule 14 (Fn14) has been reported to play an important ro...
متن کامل